Source code for amici.petab.parameter_mapping

from __future__ import annotations

"""
Parameter mapping
-----------------

When performing parameter inference, often parameters need to be mapped from
simulation to estimation parameters, and parameters can differ between
conditions. This can be handled using the `ParameterMapping`.

Note
~~~~

While the parameter mapping can be used directly with AMICI, it was developed
for usage together with PEtab, for which the whole workflow of generating
the mapping is automatized.
"""

import logging
import numbers
import re
from collections.abc import Sequence
from itertools import chain
from typing import Any
from collections.abc import Collection, Iterator

import amici
import numpy as np
import pandas as pd
import petab.v1 as petab
import sympy as sp
from amici.sbml_import import get_species_initial
from petab.v1.C import *  # noqa: F403
from petab.v1.C import (
    LIN,
    PARAMETER_SCALE,
    PREEQUILIBRATION_CONDITION_ID,
    SIMULATION_CONDITION_ID,
    NOMINAL_VALUE,
    ESTIMATE,
)
from petab.v1.models import MODEL_TYPE_PYSB, MODEL_TYPE_SBML
from sympy.abc import _clash

from .. import AmiciModel
from . import PREEQ_INDICATOR_ID
from .util import get_states_in_condition_table

try:
    import pysb
except ImportError:
    pysb = None


logger = logging.getLogger(__name__)

SingleParameterMapping = dict[str, numbers.Number | str]
SingleScaleMapping = dict[str, str]


[docs] class ParameterMappingForCondition: """Parameter mapping for condition. Contains mappings for free parameters, fixed parameters, and fixed pre-equilibration parameters, both for parameters and scales. In the scale mappings, for each simulation parameter, the scale on which the value is passed (and potentially gradients are to be returned) is given. In the parameter mappings, for each simulation parameter a corresponding optimization parameter (or a numeric value) is given. If a mapping is not passed, the parameter mappings are assumed to be empty, and if a scale mapping is not passed, all scales are set to linear. :param map_sim_var: Mapping for free simulation parameters. :param scale_map_sim_var: Scales for free simulation parameters. :param map_preeq_fix: Mapping for fixed pre-equilibration parameters. :param scale_map_preeq_fix: Scales for fixed pre-equilibration parameters. :param map_sim_fix: Mapping for fixed simulation parameters. :param scale_map_sim_fix: Scales for fixed simulation parameters. """
[docs] def __init__( self, map_sim_var: SingleParameterMapping = None, scale_map_sim_var: SingleScaleMapping = None, map_preeq_fix: SingleParameterMapping = None, scale_map_preeq_fix: SingleScaleMapping = None, map_sim_fix: SingleParameterMapping = None, scale_map_sim_fix: SingleScaleMapping = None, ): if map_sim_var is None: map_sim_var = {} self.map_sim_var = map_sim_var if scale_map_sim_var is None: scale_map_sim_var = {key: LIN for key in map_sim_var} self.scale_map_sim_var = scale_map_sim_var if map_preeq_fix is None: map_preeq_fix = {} self.map_preeq_fix = map_preeq_fix if scale_map_preeq_fix is None: scale_map_preeq_fix = {key: LIN for key in map_preeq_fix} self.scale_map_preeq_fix = scale_map_preeq_fix if map_sim_fix is None: map_sim_fix = {} self.map_sim_fix = map_sim_fix if scale_map_sim_fix is None: scale_map_sim_fix = {key: LIN for key in map_sim_fix} self.scale_map_sim_fix = scale_map_sim_fix
def __repr__(self): return ( f"{self.__class__.__name__}(" f"map_sim_var={repr(self.map_sim_var)}," f"scale_map_sim_var={repr(self.scale_map_sim_var)}," f"map_preeq_fix={repr(self.map_preeq_fix)}," f"scale_map_preeq_fix={repr(self.scale_map_preeq_fix)}," f"map_sim_fix={repr(self.map_sim_fix)}," f"scale_map_sim_fix={repr(self.scale_map_sim_fix)})" ) @property def free_symbols(self) -> set[str]: """Get IDs of all (symbolic) parameters present in this mapping""" return { p for p in chain( self.map_sim_var.values(), self.map_preeq_fix.values(), self.map_sim_fix.values(), ) if isinstance(p, str) }
[docs] class ParameterMapping(Sequence): r"""Parameter mapping for multiple conditions. This can be used like a list of :class:`ParameterMappingForCondition`\ s. :param parameter_mappings: List of parameter mappings for specific conditions. """
[docs] def __init__( self, parameter_mappings: list[ParameterMappingForCondition] = None ): super().__init__() if parameter_mappings is None: parameter_mappings = [] self.parameter_mappings = parameter_mappings
def __iter__(self): yield from self.parameter_mappings def __getitem__( self, item ) -> ParameterMapping | ParameterMappingForCondition: result = self.parameter_mappings[item] if isinstance(result, ParameterMappingForCondition): return result return ParameterMapping(result) def __len__(self): return len(self.parameter_mappings)
[docs] def append( self, parameter_mapping_for_condition: ParameterMappingForCondition ): """Append a condition-specific parameter mapping.""" self.parameter_mappings.append(parameter_mapping_for_condition)
def __repr__(self): return f"{self.__class__.__name__}({repr(self.parameter_mappings)})" @property def free_symbols(self) -> set[str]: """Get IDs of all (symbolic) parameters present in this mapping""" return set.union(*(mapping.free_symbols for mapping in self))
[docs] def petab_to_amici_scale(petab_scale: str) -> int: """Convert petab scale id to amici scale id.""" if petab_scale == LIN: return amici.ParameterScaling_none if petab_scale == LOG10: return amici.ParameterScaling_log10 if petab_scale == LOG: return amici.ParameterScaling_ln raise ValueError(f"PEtab scale not recognized: {petab_scale}")
[docs] def amici_to_petab_scale(amici_scale: int) -> str: """Convert amici scale id to petab scale id.""" if amici_scale == amici.ParameterScaling_none: return LIN if amici_scale == amici.ParameterScaling_log10: return LOG10 if amici_scale == amici.ParameterScaling_ln: return LOG raise ValueError(f"AMICI scale not recognized: {amici_scale}")
[docs] def scale_parameter(value: numbers.Number, petab_scale: str) -> numbers.Number: """Bring parameter from linear scale to target scale. :param value: Value to scale :param petab_scale: Target scale of ``value`` :return: ``value`` on target scale """ if petab_scale == LIN: return value if petab_scale == LOG10: return np.log10(value) if petab_scale == LOG: return np.log(value) raise ValueError( f"Unknown parameter scale {petab_scale}. " f"Must be from {(LIN, LOG, LOG10)}" )
[docs] def unscale_parameter( value: numbers.Number, petab_scale: str ) -> numbers.Number: """Bring parameter from scale to linear scale. :param value: Value to scale :param petab_scale: Target scale of ``value`` :return: ``value`` on linear scale """ if petab_scale == LIN: return value if petab_scale == LOG10: return np.power(10, value) if petab_scale == LOG: return np.exp(value) raise ValueError( f"Unknown parameter scale {petab_scale}. " f"Must be from {(LIN, LOG, LOG10)}" )
[docs] def scale_parameters_dict( value_dict: dict[Any, numbers.Number], petab_scale_dict: dict[Any, str] ) -> None: """ Bring parameters from linear scale to target scale. Bring values in ``value_dict`` from linear scale to the scale provided in ``petab_scale_dict`` (in-place). Both arguments are expected to have the same length and matching keys. :param value_dict: Values to scale :param petab_scale_dict: Target scales of ``values`` """ if value_dict.keys() != petab_scale_dict.keys(): raise AssertionError("Keys don't match.") for key, value in value_dict.items(): value_dict[key] = scale_parameter(value, petab_scale_dict[key])
[docs] def unscale_parameters_dict( value_dict: dict[Any, numbers.Number], petab_scale_dict: dict[Any, str] ) -> None: """ Bring parameters from target scale to linear scale. Bring values in ``value_dict`` from linear scale to the scale provided in ``petab_scale_dict`` (in-place). Both arguments are expected to have the same length and matching keys. :param value_dict: Values to scale :param petab_scale_dict: Target scales of ``values`` """ if value_dict.keys() != petab_scale_dict.keys(): raise AssertionError("Keys don't match.") for key, value in value_dict.items(): value_dict[key] = unscale_parameter(value, petab_scale_dict[key])
[docs] def create_parameter_mapping( petab_problem: petab.Problem, simulation_conditions: pd.DataFrame | list[dict] | None, scaled_parameters: bool, amici_model: AmiciModel | None = None, fill_fixed_parameters: bool = True, **parameter_mapping_kwargs, ) -> ParameterMapping: """Generate AMICI specific parameter mapping. :param petab_problem: PEtab problem :param simulation_conditions: Result of :func:`petab.get_simulation_conditions`. Can be provided to save time if this has been obtained before. :param scaled_parameters: If ``True``, problem_parameters are assumed to be on the scale provided in the PEtab parameter table and will be unscaled. If ``False``, they are assumed to be in linear scale. :param amici_model: AMICI model. :param fill_fixed_parameters: Whether to fill in nominal values for fixed parameters (estimate=0 in the parameters table). To allow changing fixed PEtab problem parameters, use ``fill_fixed_parameters=False``. :param parameter_mapping_kwargs: Optional keyword arguments passed to :func:`petab.get_optimization_to_simulation_parameter_mapping`. :return: List of the parameter mappings. """ if simulation_conditions is None: simulation_conditions = ( petab_problem.get_simulation_conditions_from_measurement_df() ) if isinstance(simulation_conditions, list): simulation_conditions = pd.DataFrame(data=simulation_conditions) # Because AMICI globalizes all local parameters during model import, # we need to do that here as well to prevent parameter mapping errors # (PEtab does currently not care about SBML LocalParameters) if petab_problem.model.type_id == MODEL_TYPE_SBML: import libsbml if petab_problem.sbml_document: converter_config = ( libsbml.SBMLLocalParameterConverter().getDefaultProperties() ) petab_problem.sbml_document.convert(converter_config) else: logger.debug( "No petab_problem.sbml_document is set. Cannot " "convert SBML LocalParameters. If the model contains " "LocalParameters, parameter mapping will fail." ) default_parameter_mapping_kwargs = { "warn_unmapped": False, "scaled_parameters": scaled_parameters, "allow_timepoint_specific_numeric_noise_parameters": not petab.lint.observable_table_has_nontrivial_noise_formula( petab_problem.observable_df ), } if parameter_mapping_kwargs is None: parameter_mapping_kwargs = {} prelim_parameter_mapping = ( petab.get_optimization_to_simulation_parameter_mapping( condition_df=petab_problem.condition_df, measurement_df=petab_problem.measurement_df, parameter_df=petab_problem.parameter_df, observable_df=petab_problem.observable_df, mapping_df=petab_problem.mapping_df, model=petab_problem.model, simulation_conditions=simulation_conditions, fill_fixed_parameters=fill_fixed_parameters, **dict( default_parameter_mapping_kwargs, **parameter_mapping_kwargs ), ) ) parameter_mapping = ParameterMapping() for (_, condition), prelim_mapping_for_condition in zip( simulation_conditions.iterrows(), prelim_parameter_mapping, strict=True ): mapping_for_condition = create_parameter_mapping_for_condition( prelim_mapping_for_condition, condition, petab_problem, amici_model, fill_fixed_parameters=fill_fixed_parameters, ) parameter_mapping.append(mapping_for_condition) return parameter_mapping
[docs] def create_parameter_mapping_for_condition( parameter_mapping_for_condition: petab.ParMappingDictQuadruple, condition: pd.Series | dict, petab_problem: petab.Problem, amici_model: AmiciModel | None = None, fill_fixed_parameters: bool = True, ) -> ParameterMappingForCondition: """Generate AMICI-specific parameter mapping for a PEtab simulation. :param parameter_mapping_for_condition: Preliminary parameter mapping for condition. :param condition: :class:`pandas.DataFrame` row with ``preequilibrationConditionId`` and ``simulationConditionId``. :param petab_problem: Underlying PEtab problem. :param amici_model: AMICI model. :param fill_fixed_parameters: Whether to fill in nominal values for fixed parameters (estimate=0 in the parameters table). :return: The parameter and parameter scale mappings, for fixed pre-equilibration, fixed simulation, and variable simulation parameters, and then the respective scalings. """ ( condition_map_preeq, condition_map_sim, condition_scale_map_preeq, condition_scale_map_sim, ) = parameter_mapping_for_condition logger.debug(f"PEtab mapping: {parameter_mapping_for_condition}") if len(condition_map_preeq) != len(condition_scale_map_preeq) or len( condition_map_sim ) != len(condition_scale_map_sim): raise AssertionError( "Number of parameters and number of parameter " "scales do not match." ) if len(condition_map_preeq) and len(condition_map_preeq) != len( condition_map_sim ): logger.debug(f"Pre-equilibration parameter map: {condition_map_preeq}") logger.debug(f"Simulation parameter map: {condition_map_sim}") raise AssertionError( "Number of parameters for pre-equilbration " "and simulation do not match." ) ########################################################################## # initial states # Initial states have been set during model import based on the SBML model. # If initial states were overwritten in the PEtab condition table, they are # applied here. # During model generation, parameters for initial concentrations and # respective initial assignments have been created for the # relevant species, here we add these parameters to the parameter mapping. # In the absence of pre-equilibration this could also be handled via # ExpData.x0, but in the case of pre-equilibration this would not allow for # resetting initial states. if states_in_condition_table := get_states_in_condition_table( petab_problem, condition ): # set indicator fixed parameter for preeq # (we expect here, that this parameter was added during import and # that it was not added by the user with a different meaning...) if condition_map_preeq: condition_map_preeq[PREEQ_INDICATOR_ID] = 1.0 condition_scale_map_preeq[PREEQ_INDICATOR_ID] = LIN condition_map_sim[PREEQ_INDICATOR_ID] = 0.0 condition_scale_map_sim[PREEQ_INDICATOR_ID] = LIN for element_id, ( value, preeq_value, ) in states_in_condition_table.items(): # for preequilibration init_par_id = f"initial_{element_id}_preeq" if ( condition_id := condition.get(PREEQUILIBRATION_CONDITION_ID) ) is not None: _set_initial_state( petab_problem, condition_id, element_id, init_par_id, condition_map_preeq, condition_scale_map_preeq, preeq_value, fill_fixed_parameters=fill_fixed_parameters, ) # need to set a dummy value for preeq parameter anyways, as it # is expected below (set to 0, not nan, because will be # multiplied with the indicator variable in initial assignment) condition_map_sim[init_par_id] = 0.0 condition_scale_map_sim[init_par_id] = LIN # for simulation condition_id = condition[SIMULATION_CONDITION_ID] init_par_id = f"initial_{element_id}_sim" _set_initial_state( petab_problem, condition_id, element_id, init_par_id, condition_map_sim, condition_scale_map_sim, value, fill_fixed_parameters=fill_fixed_parameters, ) # set dummy value as above if condition_map_preeq: condition_map_preeq[init_par_id] = 0.0 condition_scale_map_preeq[init_par_id] = LIN ########################################################################## # separate fixed and variable AMICI parameters, because we may have # different fixed parameters for preeq and sim condition, but we cannot # have different variable parameters. without splitting, # merge_preeq_and_sim_pars_condition below may fail. # TODO: This can be done already in parameter mapping creation. if amici_model is not None: variable_par_ids = amici_model.getParameterIds() fixed_par_ids = amici_model.getFixedParameterIds() condition_map_preeq_var, condition_map_preeq_fix = _subset_dict( condition_map_preeq, variable_par_ids, fixed_par_ids ) ( condition_scale_map_preeq_var, condition_scale_map_preeq_fix, ) = _subset_dict( condition_scale_map_preeq, variable_par_ids, fixed_par_ids ) condition_map_sim_var, condition_map_sim_fix = _subset_dict( condition_map_sim, variable_par_ids, fixed_par_ids ) condition_scale_map_sim_var, condition_scale_map_sim_fix = ( _subset_dict( condition_scale_map_sim, variable_par_ids, fixed_par_ids ) ) else: condition_map_preeq_var = condition_map_preeq condition_map_preeq_fix = {} condition_scale_map_preeq_var = condition_scale_map_preeq condition_scale_map_preeq_fix = {} condition_map_sim_var = condition_map_sim condition_map_sim_fix = {} condition_scale_map_sim_var = condition_scale_map_sim condition_scale_map_sim_fix = {} logger.debug( "Fixed parameters pre-equilibration: " f"{condition_map_preeq_fix}" ) logger.debug("Fixed parameters simulation: " f"{condition_map_sim_fix}") logger.debug( "Variable parameters pre-equilibration: " f"{condition_map_preeq_var}" ) logger.debug("Variable parameters simulation: " f"{condition_map_sim_var}") petab.merge_preeq_and_sim_pars_condition( condition_map_preeq_var, condition_map_sim_var, condition_scale_map_preeq_var, condition_scale_map_sim_var, condition, ) logger.debug(f"Merged: {condition_map_sim_var}") parameter_mapping_for_condition = ParameterMappingForCondition( map_preeq_fix=condition_map_preeq_fix, map_sim_fix=condition_map_sim_fix, map_sim_var=condition_map_sim_var, scale_map_preeq_fix=condition_scale_map_preeq_fix, scale_map_sim_fix=condition_scale_map_sim_fix, scale_map_sim_var=condition_scale_map_sim_var, ) return parameter_mapping_for_condition
def _set_initial_state( petab_problem: petab.Problem, condition_id: str, element_id: str, init_par_id: str, par_map: petab.ParMappingDict, scale_map: petab.ScaleMappingDict, value: str | float, fill_fixed_parameters: bool = True, ) -> None: """ Update the initial value for a model entity in the parameter mapping according to the PEtab conditions table. :param petab_problem: The PEtab problem :param condition_id: The current condition ID :param element_id: Element for which to set the initial value :param init_par_id: The parameter ID that refers to the initial value :param par_map: Parameter value mapping :param scale_map: Parameter scale mapping :param value: The initial value for `element_id` in `condition_id` :param fill_fixed_parameters: Whether to fill in nominal values for fixed parameters (estimate=0 in the parameters table). """ value = petab.to_float_if_float(value) # NaN indicates that the initial value is to be taken from the model # (if this is the pre-equilibration condition, or the simulation condition # when no pre-equilibration condition is set) or is not to be reset # (if this is the simulation condition following pre-equilibration)- # The latter is not handled here. if pd.isna(value): if petab_problem.model.type_id == MODEL_TYPE_SBML: value = _get_initial_state_sbml(petab_problem, element_id) elif petab_problem.model.type_id == MODEL_TYPE_PYSB: value = _get_initial_state_pysb(petab_problem, element_id) else: raise NotImplementedError( f"Model type {petab_problem.model.type_id} not supported." ) # the initial value can be a numeric value or a sympy expression try: value = float(value) except (ValueError, TypeError): if sp.nsimplify(value).is_Atom and ( pysb is None or not isinstance(value, pysb.Component) ): # Get rid of multiplication with one value = sp.nsimplify(value) else: raise NotImplementedError( "Cannot handle non-trivial initial state " f"expression for {element_id}: {value}" ) # this should be a parameter ID value = str(value) logger.debug( f"The species {element_id} has no initial value " f"defined for the condition {condition_id} in " "the PEtab conditions table. The initial value is " f"now set to {value}, which is the initial value " "defined in the original model." ) par_map[init_par_id] = value if isinstance(value, float): # numeric initial state scale_map[init_par_id] = petab.LIN else: # parametric initial state if ( fill_fixed_parameters and petab_problem.parameter_df is not None and value in petab_problem.parameter_df.index and petab_problem.parameter_df.loc[value, ESTIMATE] == 0 ): par_map[init_par_id] = petab_problem.parameter_df.loc[ value, NOMINAL_VALUE ] scale_map[init_par_id] = petab_problem.parameter_df[ PARAMETER_SCALE ].get(value, petab.LIN) def _subset_dict( full: dict[Any, Any], *args: Collection[Any] ) -> Iterator[dict[Any, Any]]: """Get subset of dictionary based on provided keys :param full: Dictionary to subset :param args: Collections of keys to be contained in the different subsets :return: Subsetted dictionary """ for keys in args: keys = set(keys) yield {key: val for (key, val) in full.items() if key in keys} def _get_initial_state_sbml( petab_problem: petab.Problem, element_id: str ) -> float | sp.Basic: """Get the initial value of an SBML model entity. Get the initial value of an SBML model entity (species, parameter, ...) as defined in the model (not considering any condition table overrides). """ import libsbml element = petab_problem.sbml_model.getElementBySId(element_id) type_code = element.getTypeCode() initial_assignment = petab_problem.sbml_model.getInitialAssignmentBySymbol( element_id ) if initial_assignment: initial_assignment = sp.sympify( libsbml.formulaToL3String(initial_assignment.getMath()), locals=_clash, ) if type_code == libsbml.SBML_SPECIES: value = ( get_species_initial(element) if initial_assignment is None else initial_assignment ) elif type_code == libsbml.SBML_PARAMETER: value = ( element.getValue() if initial_assignment is None else initial_assignment ) elif type_code == libsbml.SBML_COMPARTMENT: value = ( element.getSize() if initial_assignment is None else initial_assignment ) else: raise NotImplementedError( f"Don't know what how to handle {element_id} in " "condition table." ) return value def _get_initial_state_pysb( petab_problem: petab.Problem, element_id: str ) -> float | sp.Symbol: """Get the initial value of a PySB model entity. Get the initial value of an PySB model entity as defined in the model (not considering any condition table overrides). """ from pysb.pattern import match_complex_pattern species_idx = int(re.match(r"__s(\d+)$", element_id)[1]) species_pattern = petab_problem.model.model.species[species_idx] value = next( ( initial.value for initial in petab_problem.model.model.initials if match_complex_pattern( initial.pattern, species_pattern, exact=True ) ), 0.0, ) if isinstance(value, pysb.Parameter): if value.name in petab_problem.parameter_df.index: value = value.name else: value = value.value return value